txPca transforms data using principal component analysis. TODO

txPca(x, k = 3, ...)

Arguments

x

a data matrix (features in columns, samples in rows)

k

number of dimensions of the result, defaults to 3 in order to be usable in plot3dProj

...

additional arguments to prcomp

Value

Transform function taking two arguments: a data matrix y to transform, and a logical center determining whether the data are to be centered, or not. The parameters of the transform get returned in the params attribute (see prcomp). In addition, there is the varExplained function added to the parameters, which takes k, the number of components, and returns the contribution of individual dimensions to the top k components.

See also

Examples

tx<-txPca(iris[,1:4]) plot(tx(iris[,1:4])[,1:2],pch=19,col=c('red','green','blue')[as.numeric(iris$Species)])
if (interactive() && require(rgl)) { # a 3D example x<-iris[,1:4] y<-iris$Species plot3dProj(x, cls=y, tx=txPca(x)) }